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Allowing for Missing Parents in Genetic Studies of Case-Parent Triads
C. R. Weinberg
National Institute of Environmental Health Sciences, Research Triangle Park, NC

Summary

In earlier work, my colleagues and I described a log-
linear model for genetic data from triads composed of
affected probands and their parents. This model allows
detection of and discrimination between effects of an
inherited haplotype versus effects of the maternal hap-
lotype, which presumably would be mediated by pre-
natal factors. Like the transmission disequilibrium test
(TDT), the likelihood-ratio test (LRT) based on this
model is not sensitive to associations that are due to
genetic admixture. When used as a method for testing
for linkage disequilibrium, the LRT can be regarded as
an alternative to the TDT. When one or both parents
are missing, the resulting incomplete triad must be dis-
carded to ensure validity of the TDT, thereby sacrificing
information. By contrast, when the problem is set in a
likelihood framework, the expectation-maximization al-
gorithm allows the incomplete triads to contribute their
information to the LRT without invalidation of the anal-
ysis. Simulations demonstrate that much of the lost sta-
tistical power can be recaptured by means of this miss-
ing-data technique. In fact, power is reasonably good
even when no triad is complete—for example, when a
study is designed to include only mothers of cases. In-
formation from siblings also can be incorporated to
further improve the statistical power when genetic data
from parents or probands are missing.

Introduction

Parents offer a rich source of genetic information for
inference related to the joint presence of linkage and
association for a marker allele or a candidate allele (Falk
and Rubinstein 1987; Self et al. 1991; Spielman et al.
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1993; Spielman and Ewens 1996). Moreover, the use of
parents as controls (rather than unrelated persons) in-
herently prevents the influence of etiologically meaning-
less associations that can exist in a population that is
stratified owing to incomplete mixing of genetically dis-
tinct subpopulations.

For effects mediated through the inherited genotype,
the transmission disequilibrium test (TDT) can detect
the apparent nonrandomness in transmission to affected
offspring that arises when a particular allele is associated
with the disease and also is linked to (or is itself) a
susceptibility gene (Spielman et al. 1993). For effects
mediated through the maternal phenotype—for exam-
ple, through prenatal mechanisms—the TDT applied to
case-parent triads is of no use, because transmission to
the child is unrelated to the child’s disease status (Wilcox
et al. 1998).

My colleagues and I have proposed a likelihood-ratio
test (LRT; based on a 2-df x2 statistic) developed by
maximizing the likelihood under a log-linear model that
describes the multinomial distribution for case-parent
triads, with stratification by parental mating type (Wein-
berg et al. 1998; Wilcox et al. 1998). The proposed
method offers better power than the TDT (on the basis
of simulations), under either a dominant or a recessive
genetic model, and can be used to test for effects of the
offspring haplotype, the maternal haplotype, or both
simultaneously. The fact that under either a dominant
or a recessive model the 2-df LRT tends to outperform
the 1-df TDT may seem counterintuitive. The difference
is best understood as arising because the LRT is based
on a general model formulation and uses information
about the joint transmission from the parents, rather
than accounting for the parental transmissions sepa-
rately. These points have been discussed elsewhere
(Weinberg et al. 1998).

A practical problem with the use of parents as controls
is that one or both parents may be unavailable for ge-
netic study: parents may be dead or unavailable, they
may refuse to participate, or the father may need to be
excluded post hoc because he was identified incorrectly
as the parent of the proband. The result is incomplete
triads, perhaps with genetic data only for the affected
individual and one parent (a dyad) or neither parent (a
monad).

In some families, a dyad could, in theory, contribute
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Table 1

Frequencies for Case-Parent Triads

M, F, Ca Mating Type Theoretical Frequencyb

2, 2, 2 1 R2m1

2, 1, 2 2 R2m2

2, 1, 1 2 R1m2

1, 2, 2 2 R2m2

1, 2, 1 2 R1m2

2, 0, 1 3 R1m3

0, 2, 1 3 R1m3

1, 1, 2 4 R2m4

1, 1, 1 4 2R1m4

1, 1, 0 4 m4

1, 0, 1 5 R1m5

1, 0, 0 5 m5

0, 1, 1 5 R1m5

0, 1, 0 5 m5

0, 0, 0 6 m6

a M, F, and C denote the number of copies of the variant allele
carried by the mother, the father, and the child, respectively.

b R1 and R2 are the relative risks associated with inheriting one or
two copies, respectively, of the variant allele; mj is the stratum param-
eter for the jth mating-type category.

information to the TDT, because transmission some-
times is implied by the genotype of the proband and that
of the parent who provided data. For example, if the
offspring is homozygous for the variant allele and the
parent studied is heterozygous, then, although the miss-
ing parent cannot be used, we can infer that the parent
studied must have transmitted the allele to the child.
Other dyads would have to be discarded, because they
would provide only ambiguous information. For ex-
ample, when the child and parent are both heterozygous,
we cannot know whether the copy carried by the child
came from the parent studied or from the missing parent.
Curtis and Sham (1995) have pointed out, however, that
a TDT analysis that selectively excludes ambiguous dy-
ads while including the unambiguous dyads is invalid,
and, therefore, only complete triads should be used. Un-
fortunately, the restriction to complete triads discards
information and can cause a substantial loss of statistical
power.

The purpose of the present article is to describe a
likelihood-based method for inclusion of genetic infor-
mation from incomplete triads and to characterize the
behavior of the proposed method, through simulations.
Once the problem has been cast in a likelihood frame-
work, powerful statistical techniques for the handling of
missing data can be applied, and the partial information
from dyads and monads can be exploited fully, without
sacrificing the validity of the test.

Background

Assume that there is a single affected proband from
each family studied, and assume for simplicity that the
gene under consideration is biallelic or can be meaning-
fully split into two categories of alleles for analysis. Let
M, F, and C denote the number of copies of the variant
allele carried by the mother, the father, and the child,
respectively. Case-parent triads can fall into any of 15
possible categories, as shown in table 1. Here, these cat-
egories are grouped by parental mating type, as in the
article by Schaid and Sommer (1993), and symmetric
matings are assumed to be equally likely (e.g., [ ,M � 2

] and [ , ]). The third column of tableF � 1 M � 1 F � 2
1 describes hypothetical frequencies for the 15 cells; R1

(R2) is the adjusted relative risk for a child with one copy
(two copies) of the variant allele, compared with a child
with no copies. Mendelian inheritance is assumed. Under
a null hypothesis of no linkage, R1 and R2 are 1.0, and
the multinomial distribution is specified only by the mat-
ing-type–stratum parameters mj, together with the as-
sumption of Mendelian inheritance. If the genetic mech-
anism is through maternal effects rather than through
effects of the inherited gene, then a similar table can be
constructed, except that the relative-risk multipliers, des-

ignated S1 and S2, correspond to M rather than to C (see
table 2 in Wilcox et al. 1998).

The use of logarithms yields a linear model for the
logged expected counts in the 15 cells, with the most
general form of the model (Wilcox et al. 1998) specifying
the log of the expected count as

q � b I � b I � a I � a Ij 1 (C�1) 2 (C�2) 1 (M�1) 2 (M�2)

( )q � ln 2 I . (1)j (M�F�C�1)

Here, I(C�1) denotes an indicator (0/1) variable that is set
to 1 for cells where , etc. R1 corresponds toC � 1
exp(b1), R2 to exp(b2), S1 to exp(a1), and S2 to exp(a2).
The six mating-type–stratum parameters are included
via qj.

The general model can be fit by use of any standard
software for Poisson regression and can be reduced to
impose an assumption that effects are mediated strictly
via either the inherited C or the maternal M (my col-
leagues and I also have described an extension that al-
lows for effects of parental imprinting [Weinberg et al.
1998], but this extension will not be considered here).
Specific genetic alternatives can be imposed. For ex-
ample, a dominant model is implied by constraining

, which is easily accomplished by omission ofb � b1 2

I(C�1) and I(C�2) in favor of the composite I(C10) variable.
Alternatively, a recessive model can be specified by omis-
sion of the indicator variables for heterozygosity. This
modeling approach can be regarded as a generaliza-
tion of the approach suggested by Schaid and Sommer
(1993), who also described maximum-likelihood meth-
ods conditional on the parental genotype.
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There are important parallels between the LRT and
the TDT. Under a strict null hypothesis that the allele
under study is neither linked to nor associated with the
disease, the parameters b1 and b2 in table 1 are 0, and
the LRT statistic has a central 2-df x2 distribution,
whereas the TDT statistic has a central 1-df x2 distri-
bution. If there is association in the population but no
linkage, the null distributions of both test statistics are
unaffected. If there is linkage but no association, and,
in contrast with the methods described by Ewens and
Spielman (1995), random mating is not assumed for the
parental generation, neither distribution will be x2, but
both tests would have little power. Thus, equation (1)
(and its corresponding likelihood) provides a method for
statistically testing for linkage disequilibrium (via the b

parameters), in that rejection of the null hypothesis sug-
gests the presence of both association and linkage.

In earlier work, my colleagues and I performed sim-
ulations to study the operating characteristics of the 2-
df x2 LRT of the null hypothesis that (Wein-b � b � 01 2

berg et al. 1998). The testing was performed under the
broad class of genetic alternatives, without constraining
the alternative to be, for example, a dominant model.
The simulated population was composed of two ad-
mixed subpopulations that had very different gene prev-
alences and different baseline risks of disease (risks
among individuals who carry no copies of the allele).
On the basis of those simulations, when both tests could
be applied (i.e., the genetic mechanism was not mater-
nally mediated), the LRT outperformed the TDT under
either a recessive or a dominant genetic model but was
slightly underpowered, compared with the TDT, under
the gene-dose model in which .2R � R2 1

Handling Missing Parents by Use of the Expectation-
Maximization (EM) Algorithm

Now suppose that, for a given triad, the father is miss-
ing and . This father must be eitherM � 2 � C F � 2
or , but the value for F cannot be known. AssumeF � 1
that “missingness” is unrelated to (M, F, C) in that the
probability that a father is missing is not related to the
allele under study. If the parameters in table 1 are
known, the probability that the father is in fact F � 2
is . Thus, roughly that proportion of dyadsm /(m � m )1 1 2

of the form would have(M, F, C) � (2, unknown, 2)
come from the first row of table 1. This is the idea
underlying the statistical method to be applied.

The approach proposed is a standard and easily ap-
plied statistical method for handling missing data, called
the “EM algorithm” (Dempster et al. 1977). In the pres-
ent context, the method fractionally assigns the incom-
plete triads to their theoretically possible cells, on the
basis of current estimates of the parameters (the E step),

then repeats the maximization (the M step) of the like-
lihood on the basis of the newly revised, pseudocomplete
data. The method then revises the provisional assign-
ments of the incomplete triads (repeating the E step).
This two-step alternating computation is repeated until
convergence has been achieved. The likelihood then con-
sidered must be that based on the observed data (not
the pseudocomplete data) but determined by use of the
estimated parameters. The likelihood contribution for
dyads is based on the sum of probabilities across the
cells with which the observed data are compatible; in
the example given, this likelihood contribution would
be based on the sum across the first two cells of table
1. Details are provided in Appendix A. Statistical theory
guarantees that the observed-data likelihood (including
the partial information from dyads and monads) in-
creases to a maximum via the algorithm; thus, an LRT
can be performed validly (Dempster et al. 1977). My
experience with simulated data has been that conver-
gence under the EM is achieved reliably in !40 iterations,
by means of this simple multinomial application of the
method. Thus, simulations have become feasible.

Simulation Methods

As in earlier work (Weinberg et al. 1998), the simu-
lations were set up on the basis of an admixture of two
subpopulations. For a 20% subpopulation, the gene
prevalence was .3, and the background risk was .05; for
the remaining 80% of the population, the gene preva-
lence was .1, and the background risk was .01. For sim-
plicity, each of the two subpopulations was assumed to
be in Hardy-Weinberg equilibrium, even though the re-
sulting mixed population was not and mating was not
random in the mixed population. By this construction,
there is a strong, positive (and etiologically meaningless)
association between the allele and the disease in the pop-
ulation, even when . All simulations andR � R � 11 2

analyses were performed by use of the GLIM package
(Baker and Nelder 1978).

For each genetic scenario considered, 1,000 studies
were simulated, each of which began with 100 case-
parent triads. If a proportion p of 1,000 simulated stud-
ies reject the null hypothesis, then the empirical standard
error for the rejection rate (size under the null hypothesis
or power under alternatives to the null hypothesis) can
be approximated by . Approximate�p(1 � p)/1,000
95% confidence intervals for the true rejection rate then
can be constructed by adding and subtracting twice this
number to p. For simplicity, the initial simulations as-
sumed that only the father could be missing, but this
scenario was extended later to allow mothers to be miss-
ing as well. The missingness of fathers was assumed to
be unrelated to the allele under study and was assigned
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Figure 1 Simulation-based estimated powers for various testing
procedures, as a function of the percentage of fathers with missing
data. The points plotted indicate the empirical proportion of tests (by
use of a .05 level of significance) that would have rejected the null
hypothesis that (equivalently, ), amongb � b � 0 R � R � 1.01 2 1 2

1,000 simulated studies, each of which included 100 families. In the
simulation of these data sets, the inherited genotype was assumed to
influence risk via a recessive model (in which and ). TheR � 1 R � 31 2

dashed lines correspond to the full-data analyses using the 2-df LRT
or the TDT. The triangles plot the power resulting from application
of the EM algorithm to include information from the incomplete triads.

randomly by a Bernoulli mechanism (by use of uniformly
distributed random numbers), with a probability, in in-
crements of .10 within the range .00–.50. The propor-
tion missing was assumed to be �.50, primarily because,
for only 100 families, the type I error rate is 1.05 when
a higher proportion of fathers is missing.

For comparison, under scenarios in which orR 1 11

, each simulated study was analyzed with fullR 1 12

data, under both the LRT and the TDT. The analyses
then were repeated, this time without the case-parent
triads in which the father was flagged as missing and
with only the completely observed triads. Then, the EM
algorithm was applied, as described above, to recapture
information from the partially observed triads, that is,
the dyads comprising only the mother and the child.

Simulations were performed under the null hypothesis
of no linkage disequilibrium ( ), to verifyR � 1 � R1 2

that the empirical size of a level .05 test is consistent
with the nominal level. Then, data including triads with
missing fathers were simulated under a dominant model
( ), a recessive model ( and ),R � R � 3 R � 1 R � 31 2 1 2

and a gene-dose model ( and ). Simula-R � 2 R � 41 2

tions also were performed under a dominant model

( ) and a recessive model ( andS � S � 3 S � 1 S �1 2 1 2

), for a maternally mediated effect.3
To demonstrate the application of the method when

mothers also are missing, a set of simulations was per-
formed with various rates of missingness for both moth-
ers and fathers. For simplicity, the simulations were per-
formed under the assumption that the mother and fa-
ther were equally and independently likely to be miss-
ing, although the EM method does not require this
assumption.

Finally, simulations were performed for families in
which no fathers contributed information—that is, the
information was restricted to mother/proband dyads.
For these simulations, the number of families was in-
creased from 100 to 200, because a larger number of
families is required when a study is designed with moth-
ers only, to ensure that the type I error rate is consistent
with the nominal level .05.

Results of Simulations

Simulation under the null model yielded rejection rates
for both the full-data LRT and the incomplete-data
EM-LRT that were consistent with the .05 level. How-
ever, see Appendix B for a minor correction that is help-
ful, especially when a large proportion of triads are
incomplete.

Figure 1 displays results for the recessive model, under
a scenario in which the gene effect is inherited. As in an
earlier report (Weinberg et al. 1998), the LRT (power
of .7) outperformed the TDT (power !.5) when the tri-
ads were complete. With an increasing proportion of
missing fathers, the power of both the LRT and the TDT
declined sharply when only the completely observed tri-
ads were used in the analysis. When incomplete triads
were included by means of the EM-LRT, however, the
power stayed high, evidently recapturing most of the
information. Figure 2 shows corresponding results under
a dominant model. Again, the EM recaptured most of
the lost power, with remarkably little loss even when
half the fathers were missing, compared with the full-
data analysis.

The TDT corresponds to the score statistic for the
gene-dose model ( ; Schaid and Sommer 1994)2R � R2 1

and outperformed the 2-df LRT, under this scenario.
Nevertheless, as shown in figure 3, the power of the TDT
dropped rapidly when fathers were missing and fell be-
low that of the EM-LRT when �30% were missing.
Again, the EM recaptured most of the power that would
have been sacrificed by exclusion of the triads with miss-
ing data.

Results for genetic mechanisms that operate via the
mother revealed more modest gains in power, for the
EM algorithm (the TDT is not shown, because the TDT
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Figure 3 Plot of simulation-based estimated powers similar
to those shown in figs. 1 and 2. In this set of simulations, the inher-
ited genotype was assumed to influence risk via a gene-dose model
( and ).R � 2 R � 41 2

Figure 4 Plot of simulation-based estimated powers similar to
those shown in figs. 1–3. In this set of simulations, the maternal ge-
notype was assumed to influence risk via a recessive model (S � 11

and ).S � 32

Figure 2 Plot of simulation-based estimated powers similar to
that shown in fig. 1. In this set of simulations, the inherited genotype
was assumed to influence risk via a dominant model ( ).R � R � 31 2

has no power beyond the type I error rate for detection
of such effects). Figure 4 shows results for a recessive
model ( and ). Slightly more than half theS � 1 S � 31 2

lost power was regained by incorporation of information
from the dyads, via the EM approach.

Results for a maternal-effect dominant model (S �1

and ) revealed somewhat better recovery of3 S � 32

power (fig. 5). The power was excellent when the model
was based on 100 triads, even with half the fathers
missing.

In practice, some mothers also may be missing, and
the next set of simulations was performed under the
assumption that a random fraction of mothers was miss-
ing. For simplicity, mothers and fathers were assumed
to be equally likely to be missing, and these events were
simulated as independent. For example, in the extreme
for these simulations, when the proportion of missing
mothers or fathers was set to .5, an average of only 25%
of triads were complete ( ), and another.25 � .5 # .5
25% were missing both parents. Results are shown in
figure 6. Much of the lost information again was recap-
tured, even when mothers as well as fathers could be
missing.

When all fathers were missing and the study included
only cases and their mothers, the empirical level of a 2-
df test was .058, on the basis of 1,000 simulations of
200 dyads, and this level is statistically consistent with
the nominal level .05. The estimated power under a re-
cessive alternative ( and ) was .74 (com-R � 1 R � 31 2

pared with .96 with full data), and the estimated power
under a dominant alternative ( and ) wasR � 3 R � 31 2

.97 (compared with 1.00 with full data). For a scenario
in which the effect is due to the maternal genotype, the
parameter S1 can be shown to be statistically unidenti-
fiable, because its estimate cannot be separated from that
of certain other stratum parameters. Nevertheless, the
LRT, which now must be based on a 1-df x2 distribution,
remains valid. Under the null hypothesis, with 200 dy-
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Figure 5 Plot of simulation-based estimated powers similar to
that shown in fig. 4. In this set of simulations, the model was assumed
to be dominant ( ).S � 3 � S1 2

Figure 6 Plot of simulation-based estimated powers similar to
that shown in fig. 1. In this set of simulations, either the mother or
the father (or both) were missing. The percentage missing corresponds
to a single missing probability that was applied independently to the
mothers and the fathers, for simulation of the incomplete triads. For
example, if the missing rates are 20%, an average of 16% of families
will have data from the mother but not the father, 16% will have data
from the father but not the mother, 64% will have data from both
parents, and 4% will not have data from either parent.

ads, the empirical level of the test was .052, which is
statistically consistent with the nominal level .05. Under
a recessive alternative ( and ) the empiricalS � 1 S � 31 2

power was .52 (compared with .88 with full data). Under
a dominant alternative ( and ) the empiricalS � 3 S � 31 2

power was .86 (compared with 1.00 with full data).

Discussion

When affected individuals are studied together with
their parents, to test for linkage between an allelic var-
iant or marker and an associated disease, missing parents
can cause considerable loss of statistical power if the
TDT is used, because incomplete triads must be dis-
carded. In contrast, likelihood methods together with
the EM algorithm allow the recovery of much of the
lost information and make statistically efficient use of
the data provided by dyads and monads. Simulations
have revealed that, conditional on the parental geno-
types, when the inherited genotype influences risk the
efficiency of the EM-LRT is close to that of the full-data
analysis, even when as many as half the fathers are miss-
ing. When the causal pathway is via maternal factors,
the recovery of power is still substantial, although less
impressive. The method works equally well when both
fathers and mothers are missing, although the program-
ming of the EM algorithm becomes more complicated.

Potentially, genetic data could be missing for some of
the affected probands as well, either owing to accidents
in the laboratory or, in the case of a fetus with a defect,
owing to elective termination of the pregnancy and tech-
nical difficulties in obtaining usable fetal tissue or in

obtaining parental consent to use the tissue. Nonetheless,
in the absence of data from the affected proband, genetic
data from one or two of the parents could be incor-
porated, via the EM algorithm, in a straightforward ex-
tension of the method described above.

If genetic data are available from siblings of the pro-
bands of some of the incomplete triads, sibling infor-
mation potentially could be incorporated in the E step
of the EM algorithm, thereby improving the power even
more. This approach either would not collect or would
not make use of the affected status of the siblings studied.
If the missing individual was the father, however, one
would need to verify genetically (or be willing to assume)
that paternity was in fact shared between the proband
and the other siblings providing genetic data.

If a multiallelic gene has been grouped into two cat-
egories for analysis, the finer allelic categories can still
be used in the E step, to enable the investigator to re-
capture even more of the genetic information for the
missing parent, thereby improving the statistical power
of the LRT. Then, the M step can still be based on the
biallelic grouping, under the assumption that the distinct
alleles within each of the two groups share a common
relationship to risk.

A technical point is that I assumed, for simplicity, that
missingness is unrelated to the allele under study; how-
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ever, this may not always be true. Nevertheless, param-
eters corresponding to mating-type–specific probabilities
that the father is missing could be incorporated (and
estimated), and EM-based maximization using the re-
sulting likelihood could be performed (this model would
allow a test of the hypothesis that the six rates of miss-
ingness are equal, via a 5-df x2 test). However, if different
mating-type–specific rates of missingness were required
for the father and the mother, the corresponding model
would be overparameterized and intractable; thus, sim-
plification of assumptions sometimes is required. For ex-
ample, the problem becomes statistically identifiable if
a single rate of missingness for mothers is applied across
all six mating-type categories. An alternative that might
work well for some populations is to stratify on self-
defined ethnicity, under the assumption of possibly dif-
ferent rates of missingness across the strata. Of course,
there is always the option to use the analysis of complete
triads, either via the TDT or the LRT, since neither
method is invalidated by possibly differential rates of
missing data across the mating types.

Sun et al. (1998) recently discussed the remarkable
fact that linkage can be studied by use of only one parent
per proband. The single-parent design can have practical
advantages, because the mother may be easier to recruit
than the father, and, in general, questions about parental
status would not be of concern. Although Sun et al.
(1998) described noniterative approaches to estimation,
maximum-likelihood methods such as the EM-LRT
would be expected to provide optimal efficiency. My
simulations confirmed that a design based on mother/
offspring dyads, analysis of which would not be possible
by use of the TDT, provides good statistical power when
analysis is based on the EM-LRT and when risk depends
on the inherited genotype. A 1-df LRT can be applied
to test for maternally mediated effects.

The single-parent design, however, imposes notewor-
thy limitations on inference related to linkage. Genetic
mating symmetry cannot be verified on the basis of data
from dyads, and the full model (eq. [1]) cannot be si-
multaneously fit to distinguish between effects of the
maternal genotype and effects of the inherited genotype.
Under a maternal-effects scenario the model is not fully
identifiable, and, although a 1-df LRT is valid, parameter
estimation cannot be trusted to be without bias.

Finally, because my focus in this article has been on
hypothesis testing, I have not distinguished between the
study of a candidate gene and the study of a marker
gene. Because both scenarios reduce to the same null
hypothesis, in which all the relative risks are 1.0, the
EM-LRT provides a valid hypothesis test under either
scenario. Thus, the distinction between a marker and a
candidate gene is not important for hypothesis testing.
However, if the gene under study is a candidate gene,
then the model given by equation (1) can be considered

as a literal representation of a multiplicative alternative
to the null hypothesis. In such a context, the use of the
EM algorithm will serve not only to provide a more
powerful statistical test but also to improve the precision
of estimation for the relative risk parameters R1, R2, S1,
and S2. By contrast, if the gene under study is a marker
that is related to risk of the disease only through linkage
disequilibrium with a nearby risk-conferring gene, then
the alternative model in table 1 is not quite correct, be-
cause the relative risk in the offspring will also depend
on the parental genotype and not only on the inherited
genotype, owing to recombination. Nevertheless, the
EM-LRT still provides a valid test of linkage disequi-
librium, relative to the null model specified by R �1

.R � 12
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Appendix A

For simplicity of exposition, I assume that only fathers
are missing, but the method described can be easily gen-
eralized to accommodate missing mothers (and missing
probands). Let Nijk denote the observed number of triads
in which the mother, the father, and the child carry i, j,
and k copies, respectively, of the variant allele. Let Mi?k

denote the number(s) of dyads in which the mother has
i copies, the child has k copies, and the father could not
be studied and therefore carries an unknown number of
copies. Let N denote the total number of families stud-
ied. Let pijk denote the cell probability for cell

—that is, the expected count of table(M, F, C) � (i, j, k)
1 divided by N. If complete data were available, the
logarithm of the multinomial likelihood would be

( ) ( )log L � N log p . (A1)� ijk ijk
possible i,j,k

If some fathers are missing, the logarithm of the ob-
served-data likelihood would be instead

( )log L �

( )N log p � M log p .� � �ijk ijk i?k ijk( )
possible i,j,k possible i,k possible j

(A2)

The EM algorithm provides a computational trick that
allows maximization of the likelihood given in equation
(A2), over the parameters of a given model—for ex-
ample, the model in table 1. The general strategy calls
for estimating the data and then maximizing the ex-
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pression of (A1) on the basis of the estimated data. The
maximization can be done by use of standard software.
Let denote the estimate for the count for cell (i, j,rYijk

k), at iteration r, and let denote the estimate for therpijk

probability for cell (i, j, k), at iteration r. Then, the E
step performs the next “estimation” as follows:

rpijkr�1Y � N � M .ijk ijk i?k r� pijk
possible j

For the M step, is used in place of Nijk in equa-r�1Yijk

tion (A1), and the next set of is obtained byr�1pijk

maximization.
These two steps are repeated in their turn until the

parameter estimates converge. The theory guarantees
(Dempster et al. 1977) that, at each stage of iteration,
the likelihood given in equation (A2)—that is, the ob-
served-data likelihood—will increase. Following con-
vergence to its maximum, the log likelihood then is cal-
culated on the basis of equation (A2). When a model
containing only the mating-type–stratum parameters is
compared with one that also includes parameters cor-
responding to R1 and R2, the change in twice the max-
imized log likelihood provides a test statistic with an
approximately (large samples) 2-df x2 distribution (un-
der the null hypothesis), which then permits an LRT for
linkage disequilibrium. Other nested models also can be
compared, by contrasting, for example, the fits (via a 1-
df x2 test) for a model that allows separately for R1 and
R2, compared with the more constrained dominance
model specifying that or with a recessive modelR � R1 2

specifying that .R � 11

Appendix B

The EM algorithm can be shown to have the property
that, at each iteration, the estimated likelihood function
increases. However, in certain applications in which
probabilities can be estimated to be 0, the iterations can
become stuck at 0 for the component of the parameter
vector with a current estimate of 0. For example, if there
are no observed triads in which all three members are
homozygous for the variant allele, then the fitted values
for mating type 1 will begin at 0 and can never move

away from 0. To avoid this problem, the iterations can
be bounced away from this boundary, by checking for
fitted values !.01, substituting .01 in place of such ex-
tremely low values, and resuming the iteration.
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